3,780 research outputs found

    Propositional Dynamic Logic with Converse and Repeat for Message-Passing Systems

    Get PDF
    The model checking problem for propositional dynamic logic (PDL) over message sequence charts (MSCs) and communicating finite state machines (CFMs) asks, given a channel bound BB, a PDL formula φ\varphi and a CFM C\mathcal{C}, whether every existentially BB-bounded MSC MM accepted by C\mathcal{C} satisfies φ\varphi. Recently, it was shown that this problem is PSPACE-complete. In the present work, we consider CRPDL over MSCs which is PDL equipped with the operators converse and repeat. The former enables one to walk back and forth within an MSC using a single path expression whereas the latter allows to express that a path expression can be repeated infinitely often. To solve the model checking problem for this logic, we define message sequence chart automata (MSCAs) which are multi-way alternating parity automata walking on MSCs. By exploiting a new concept called concatenation states, we are able to inductively construct, for every CRPDL formula φ\varphi, an MSCA precisely accepting the set of models of φ\varphi. As a result, we obtain that the model checking problem for CRPDL and CFMs is still in PSPACE

    On commutativity based edge lean search

    Get PDF
    Exploring a graph through search is one of the most basic building blocks of various applications. In a setting with a huge state space, such as in testing and verification, optimizing the search may be crucial. We consider the problem of visiting all states in a graph where edges are generated by actions and the (reachable) states are not known in advance. Some of the actions may commute, i.e., they result in the same state for every order in which they are taken (this is the case when the actions are performed independently by different processes). We show how to use commutativity to achieve full coverage of the states while traversing considerably fewer edges

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general

    Modelling stochastic bivariate mortality

    Get PDF
    Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining increasing reputation as a way to represent mortality risk. This paper represents a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach. On the theoretical side, we extend to couples the Cox processes set up, i.e. the idea that mortality is driven by a jump process whose intensity is itself a stochastic process, proper of a particular generation within each gender. Dependence between the survival times of the members of a couple is captured by an Archimedean copula. On the calibration side, we fit the joint survival function by calibrating separately the (analytical) copula and the (analytical) margins. First, we select the best fit copula according to the methodology of Wang and Wells (2000) for censored data. Then, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the analytical marginal survival functions. Coupling the best fit copula with the calibrated margins we obtain, on a sample generation, a joint survival function which incorporates the stochastic nature of mortality improvements and is far from representing independency.On the contrary, since the best fit copula turns out to be a Nelsen one, dependency is increasing with age and long-term dependence exists

    Propositional Dynamic Logic for Message-Passing Systems

    Full text link
    We examine a bidirectional propositional dynamic logic (PDL) for finite and infinite message sequence charts (MSCs) extending LTL and TLC-. By this kind of multi-modal logic we can express properties both in the entire future and in the past of an event. Path expressions strengthen the classical until operator of temporal logic. For every formula defining an MSC language, we construct a communicating finite-state machine (CFM) accepting the same language. The CFM obtained has size exponential in the size of the formula. This synthesis problem is solved in full generality, i.e., also for MSCs with unbounded channels. The model checking problem for CFMs and HMSCs turns out to be in PSPACE for existentially bounded MSCs. Finally, we show that, for PDL with intersection, the semantics of a formula cannot be captured by a CFM anymore

    Compositional Message Sequence Charts (CMSCs) Are Better to Implement Than MSCs

    Full text link
    Abstract. Communicating Finite States Machines (CFMs) and Mes-sage Sequence Graphs (MSC-graphs for short) are two popular spec-ification formalisms for communicating systems. MSC-graphs capture requirements (scenarios), hence they are the starting point of the de-sign process. Implementing an MSC-graph means obtaining an equiva-lent deadlock-free CFM, since CFMs correspond to distributed message-passing algorithms. Several partial answers for the implementation have been proposed. E.g., local-choice MSC-graphs form a subclass of deadlock-free CFM: Testing equivalence with some local-choice MSC-graph is thus a partial answer to the implementation problem. Using Compositional MSCs, we propose a new algorithm which captures more implementable models than with MSCs. Furthermore, the size of the implementation is reduced by one exponential.

    On Global Types and Multi-Party Session

    Get PDF
    Global types are formal specifications that describe communication protocols in terms of their global interactions. We present a new, streamlined language of global types equipped with a trace-based semantics and whose features and restrictions are semantically justified. The multi-party sessions obtained projecting our global types enjoy a liveness property in addition to the traditional progress and are shown to be sound and complete with respect to the set of traces of the originating global type. Our notion of completeness is less demanding than the classical ones, allowing a multi-party session to leave out redundant traces from an underspecified global type. In addition to the technical content, we discuss some limitations of our language of global types and provide an extensive comparison with related specification languages adopted in different communities
    • …
    corecore